US009354814B2

a2z United States Patent (10) Patent No.: US 9,354,814 B2
Alcantara et al. 45) Date of Patent: *May 31, 2016
(54) HOST READ COMMAND RETURN USPC oo 711/100, 154, 167, 170
REORDERING BASED ON TIME See application file for complete search history.
ESTIMATION OF FLASH READ COMMAND
COMPLETION (56) References Cited
(71) Applicant: HGST Netherlands B.V., Amsterdam U.S. PATENT DOCUMENTS
(NL) 6,013,589 A * 1/2000 DesMarais AG61F 13/53747
442/370
(72) Inventors: Joao Alcantara, Irvine, CA (US); 6,513,089 Bl 1/2003 Hofmann et al.

Zoltan Szubbocsev, Haimhausen (DE) (Continued)
(73) Assignee: g\]([;jT Netherlands B.V., Amsterdam FOREIGN PATENT DOCUMENTS

. IP 201214433 1/2012
(*) Notice: Subject to any disclaimer, the term of this WO WO02005006172 A2 1/2005

patent is extended or adjusted under 35

U.S.C. 154(b) by O days. (Continued)
This patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer. Combined Search and Examination Report under Sections 17 and

(1) Appl.No.: 14/680,657 18(3), May 2, 2014, 6 pages, Patents Directorate.
ppl. No.: A

Primary Examiner — Tuan Thai

(22) Filed: Apr. 7,2015 (74) Attorney, Agent, or Firm — John D. Henkhaus
(65) Prior Publication Data (57) ABSTRACT
US 2015/0212735 Al Jul. 30, 2015 Managing data returns to a host in response to read com-

mands, an operation monitor of a solid-state drive (SSD)

Related U.S. Application Data manages counters used to hold metrics that characterize the

(63) Continuation of application No. 13/705,103, filed on estimated time to complete a read operation on a correspond-
Dec. 4, 2012, now Pat. No. 9,032,177. ing flash die. A timer generates a periodic event which dec-
rements the counters over time. The value stored in each
(51) Int.ClL counter is generated for flash operations submitted to the
GOG6F 12/00 (2006.01) corresponding die and is, generally, based on the operational
GOG6F 3/06 (2006.01) history and the physical location of the operation. Whenever
GO6F 12/02 (2006.01) a read command is scheduled for submission to a particular
(52) US.CL die, the time estimate for that particular read operation is
CPC .o GOG6F 3/061 (2013.01); GOGF 3/0605 retrieved and, based on this information, the optimum order in
(2013.01); GOG6F 3/0659 (2013.01); which to return data to the host is determined. This order is
(Continued) used to schedule and program data transfers to the host so that
a minimum number of read commands get blocked by other

(58) Field of Classification Search read commands.

CPC GO6F 12/00; GO6F 12/14; GOG6F 12/0646;
GOG6F 3/0629; GOG6F 3/0649 33 Claims, 4 Drawing Sheets
HOST 10
4

106] PRIMARY
INTERFACE

INTERFACE
0

CONTROLLER WITH
FIRMWARE
uz
VOLATILE
MEMORY
ADDRESSING 122
14

ERROR CORRECTION
ODE (ECC)

850
102

DATA BUFFER CACHE
18

NON-VOLATILE MEMORY
1202
NON-VOLATILE MEMORY
1200

.
NON-VOLATILE MEMORY
1200

US 9,354,814 B2
Page 2

(52) US.CL
CPC GOGF 3/0679 (2013.01); GOGF 12/0246
(2013.01); GO6F 2206/1014 (2013.01); GO6F
2212/7205 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,146,524 B2* 12/2006 Patel GO6F 11/1076
707/E17.01
7493439 B2* 2/2009 Gower GOG6F 11/3419
710/260
7,512,762 B2 3/2009 Gower et al.
7,802,061 B2 9/2010 Qawami et al.

7,937,321 B2
7,937,421 B2*

5/2011 Hoefelmeyer
5/2011 Mikesell HO4N 21/6125
707/825
8,140,739 B2
2008/0276240 Al
2010/0318718 Al
2011/0022781 Al
2012/0008414 Al

3/2012 Langlois et al.
11/2008 Ganesh et al.
12/2010 Eilert et al.

1/2011 Wakrat et al.

1/2012 Katz et al.

FOREIGN PATENT DOCUMENTS

WO WO02005024832 A2 3/2005
WO WO02011000082 Al 1/2011
WO WO02012037293 Al 3/2012

* cited by examiner

U.S. Patent

May 31, 2016 Sheet 1 of 4 US 9,354,814 B2
HOST 100
DEVICE
104
A
106 PRIMARY
"] INTERFACE
\ 4
SSD
INTERFACE 102
10
|
CONTROLLER WITH
FIRMWARE
12
| VOLATILE
MEMORY
ADDRESSING 122
114 [
ERROR CORRECTION
DATA BUFFER CACHE CODE (ECC)
116
118
NON-VOLATILE MEMORY
120a
NON-VOLATILE MEMORY
120b
[
®
[}
NON-VOLATILE MEMORY
120n

FIG. 1

US 9,354,814 B2

Sheet 2 of 4

May 31, 2016

U.S. Patent

¢ 9Old

¥0C
Ndd

2ug0Z g0z @ugoz
\ \ \
¢olp LaIp 031p
UHD
24802 16807 @9802 —
\ \ \ uez
¢oIp |oIp 031p .
PIO \V
28907 18807 @e80z e
\ \ \
¢oIp |oIp 031p
0HO
\l
€90z

{14
dOLINOW
NOILVH3dO AJOW3W

v/ 002

U.S. Patent May 31, 2016 Sheet 3 of 4 US 9,354,814 B2
_~Memory Operation Monitor 202
302b@
“~ Die0 [302017] pie0 [*s+| Died
counter counter counter || .
30031 Timer
“~ Die1 Die1l [ses|| Diel
counter counter counter 2
30242 —-302n
~ Die2 Die2 || [Die2
counter | counter | counter [302n2
302b2
Erase
Cost 310
./
Reg CHO Bus Control
Read 312 316a
Cost [
Reg
Control Logic
314 306
Prog a CH1 Bus Control
Cost [316b
Reg 1
Prog 314b
Cost |
ReG2 | 3146
Prog |~ CHn Bus Control
Cost . 316n
Reg 3 .
Prog Memory
Cost 314” ﬁ
Regn ~

FIG. 3

U.S. Patent May 31, 2016 Sheet 4 of 4 US 9,354,814 B2

RECEIVE A DATA READ COMMAND FROM A HOST
402

A

GENERATE AN OPERATION COST FOR EACH OPERATION
SUBMITTED TO A RESPECTIVE NON-VOLATILE MEMORY DIE
404

A 4

DECREMENT EACH OPERATION COST OVER TIME, BASED ON
A TIMER THAT GENERATES A PERIODIC EVENT
406

I

COMPUTE THE TOTAL COST OF THE READ COMMAND
BASED ON THE CURRENT OPERATION COSTS FOR EACH
OPERATION
408

v

DETERMINE, BASED ON THE TOTAL COST OF THE READ
COMMAND, IN WHAT ORDER TO RETURN REQUESTED
DATA TO THE HOST RELATIVE TO OTHER DATA READ
COMMANDS RECEIVED FROM THE HOST
410

y

RETURN THE REQUESTED DATA TO THE HOST IN THE
ORDER DETERMINED
412

FIG. 4

US 9,354,814 B2

1
HOST READ COMMAND RETURN
REORDERING BASED ON TIME
ESTIMATION OF FLASH READ COMMAND
COMPLETION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims the benefit
of priority to commonly-owned pending U.S. patent applica-
tion Ser. No. 13/705,103 filed on Dec. 4, 2012, the entire
contents of which is incorporated by reference for all pur-
poses as if fully set forth herein.

FIELD OF THE INVENTION

Embodiments of the invention relate to an estimation
mechanism for determining the order in which to return data
to a host from a solid-state drive (SSD).

BACKGROUND

A solid-state drive (SSD) is a data storage device that uses
integrated circuit assemblies as memory units to store data
persistently. SSD technology uses electronic interfaces com-
patible with traditional block input/output (I/O) hard disk
drives (HDDs). SSDs do not employ any moving mechanical
components, which distinguishes them from traditional
HDDs which store data on rotating magnetic disks using
movable read-write heads.

Currently, most SSDs use NAND-based flash memory,
which is a form of non-volatile memory which retains data in
the absence of power and which can be electrically erased and
reprogrammed (as flash memory was developed from
EEPROM). Further, hybrid drives combine features of both
SSDs and HDDss in the same unit, typically containing a hard
disk drive and an SSD cache to improve performance of
frequently accessed data. Flash memory stores information in
an array of memory cells made from floating-gate transistors.

Enterprise SSD implementations, e.g., in servers, are typi-
cally held to different and higher performance standards than
are desktop and laptop HDD and SSD drives. That is, enter-
prise SSDs are typically required to provide relatively high
1/0 performance. Therefore, optimum pure read and mixed
read/write performance is a goal of many SSD development
engineers.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

Embodiments of the invention are directed towards man-
aging data returns to a host in response to read commands, for
use in a solid-state drive (SSD) storage device. Optimum pure
read and mixed read/write performance is influenced by the
order in which data is returned to the host, and the order in
which data is returned to the host does not necessarily corre-
spond to the order in which the host sent the read commands.

According to an embodiment, an operation monitor of a
solid-state drive (SSD) is configured for managing counters
used to manage metrics that characterize the estimated time to
complete a read operation on a corresponding flash die, i.e.,
an operation cost. The operation monitor initiates a timer that
generates a periodic event which decrements the counters.
The value stored in each counter is generated for flash opera-
tions submitted to the corresponding die and is, generally,
based on the history and the physical location of the opera-
tion. Whenever a read command is scheduled for submission

10

15

20

25

30

35

40

45

50

55

60

65

2

to a particular die, controller firmware, for example, is able to
retrieve the time estimate for that particular flash read opera-
tion. Based on this information the optimum order in which to
return data to the host is determinable. This order is used to
schedule and program data transfers to the host, where an
optimum order describes a sequence in which a minimum
number of read commands get blocked by other read com-
mands when the blocker commands do not have their corre-
sponding data available to be returned to the host.

According to an embodiment of a method for managing
returns to a host in response to read commands received by an
SSD device, a data command is received from a host and an
operation cost is generated for each operation submitted to a
respective non-volatile memory die. Each operation cost is
decremented based on a timer that generates a periodic event
(e.g., aclock tick). Thus, the operation cost represented in the
counter decreases over time, just as the time to read the
corresponding die decreases over time. The total cost of the
read command that was received from the host is computed
based on the current operation costs for each operation sub-
mitted to each respective non-volatile memory die associated
with the read command. Based on the total cost of the read
command, the order in which to return the requested data to
the host is determined, relative to other read commands
received from the host.

Embodiments discussed in the Summary of Embodiments
of'the Invention section are not meant to suggest, describe, or
teach all the embodiments discussed herein. Thus, embodi-
ments of the invention may contain additional or different
features than those discussed in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

FIG. 11is ablock diagram illustrating an example operating
environment in which embodiments of the invention may be
implemented;

FIG. 2 is a block diagram illustrating a portion of an
example operating environment, focusing on a memory
operation monitor, in which embodiments of the invention
may be implemented;

FIG. 3 is a block diagram illustrating a memory operation
monitor, according to an embodiment of the invention; and

FIG. 4 is a flow diagram illustrating a method for managing
returns to a host, according to an embodiment of the inven-
tion.

DETAILED DESCRIPTION

Approaches to managing data returns to a host in response
to read commands from the host, for use in a solid-state drive
(SSD) storage device, are described. In the following descrip-
tion, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understand-
ing of the embodiments of the invention described herein. It
will be apparent, however, that the embodiments of the inven-
tion described herein may be practiced without these specific
details. In other instances, well-known structures and devices
are shown in block diagram form in order to avoid unneces-
sarily obscuring the embodiments of the invention described
herein.

Solid State Drive Configuration

Embodiments of the invention may be used to manage a
solid-state drive (SSD) storage device. FIG. 1 is a block

US 9,354,814 B2

3

diagram illustrating an example operating environment in
which embodiments of the invention may be implemented.
FIG. 1 1illustrates a generic SSD architecture 100, with an SSD
102 communicatively coupled with a host device 104 through
aprimary communication interface 106. Embodiments of the
invention are not limited to a configuration as depicted in FIG.
1, rather, embodiments may be applicable to operating envi-
ronments other than SSDs and may be implemented in SSD
configurations other than that illustrated in FIG. 1. For
example, embodiments may be implemented to operate in
other environments which rely on non-volatile memory stor-
age components for writing and reading of data.

Host device 104 (or simply “host™) broadly represents any
type of computing hardware or software that makes, among
others, data I/O requests or calls to one or more memory
device. For example, host 104 may be an operating system
executing on a computer, a tablet, a mobile phone, or gener-
ally any type of computing device that contains or interacts
with memory. The primary interface 106 coupling host device
104 to SSD 102 may be, for example, a computer’s internal
bus or a communication cable or a wireless communication
link, or the like.

The example SSD 102 illustrated in FIG. 1 includes an
interface 110, a controller 112 (e.g., a controller having firm-
ware logic therein), an addressing 114 function block, data
buffer cache 116, error correction code (ECC) 118, and one or
more non-volatile memory components 120a, 12056, 1207.

Interface 110 is a point of interaction between components,
namely SSD 102 and host device 104 in this context, and is
applicable at the level of both hardware and software. This
allows a component to communicate with other components
via an input/output system and an associated protocol. A
hardware interface is typically described by the mechanical,
electrical and logical signals at the interface and the protocol
for sequencing them. Some non-limiting examples of com-
mon and standard interfaces include SCSI (Small Computer
System Interface), SAS (Serial Attached SCSI), and SATA
(Serial ATA).

An SSD 102 includes a controller 112, which incorporates
the electronics that bridge the non-volatile memory compo-
nents (e.g., NAND flash) to the host, such as non-volatile
memory 120a, 1205, 1207 to host device 104. The controller
is typically an embedded processor that executes firmware-
level code and is an important factor in SSD performance.

Controller 112 interfaces with non-volatile memory 120a,
1205, 120n via an addressing 114 function block. The
addressing 114 function operates, for example, to manage
mappings between logical block addresses (LBAs) from the
host 104 to a corresponding physical block address on the
SSD 102, namely, on the non-volatile memory 120a, 1205,
1207 of SSD 102. Because the non-volatile memory page and
the host sectors are different sizes, an SSD has to build and
maintain a data structure that enables it to translate between
the host writing data to or reading data from a sector, and the
physical non-volatile memory page on which that data is
actually placed. This table structure or “mapping” may be
built and maintained for a session in the SSD’s volatile
memory 122, such as DRAM or some other local volatile
memory component accessible to controller 112 and address-
ing 114. Alternatively, the table structure may be maintained
more persistently across sessions in the SSD’s non-volatile
memory such as non-volatile memory 120a, 1205, 1207.

Addressing 114 interacts with data buffer cache 116 and
error correction code (ECC) 118, in addition to non-volatile
memory 120a, 1205, 1207. Data buffer cache 116 of an SSD
102 typically uses DRAM as a cache, similar to the cache in
hard disk drives. Data buffer cache 116 serves as a buffer or

10

15

20

25

30

35

40

45

50

55

60

65

4

staging area for the transmission of data to and from the
non-volatile memory components, as well as serves as a cache
for speeding up future requests for the cached data. Data
buffer cache 116 is typically implemented with volatile
memory so the data stored therein is not permanently stored in
the cache, i.e., the data is not persistent.

ECC 118 is a system of adding redundant data, or parity
data, to a message, such that it can be recovered by a receiver
even when a number of errors were introduced, either during
the process of transmission, or on storage.

Finally, SSD 102 includes one or more non-volatile
memory 120a, 1205, 120z components. For a non-limiting
example, the non-volatile memory components 120a, 1205,
1207 may be implemented as flash memory (e.g., NAND or
NOR flash), or other types of solid-state memory available
now or in the future. The non-volatile memory 120a, 1205,
1207 components are the actual memory electronic compo-
nents on which data is persistently stored. The non-volatile
memory 120a, 1205, 1207 components of SSD 102 can be
considered the analogue to the hard disks in hard-disk drive
(HDD) storage devices.

Embodiments of the invention are described which manage
data returns to a host in response to read commands from the
host. Consequently, an optimum order in which data associ-
ated with read commands should be returned to the host is
determinable and a more performant SSD storage device is
attainable.

Memory Operation Monitor

FIG. 2 is a block diagram illustrating a portion of an
example operating environment, focusing on a memory
operation monitor, in which an embodiment of the invention
may be implemented. Example operating environment 200
includes a memory operation monitor 202 (hereafter referred
to as “operation monitor”) communicatively coupled to a
CPU 204. Operation monitor 202 is further coupled to one or
more channels 206a, 2065, 206, where each channel is
coupled to one or more non-volatile memory dies. For
example purposes, FIG. 2 depicts channel 2064 coupled to
and communicating with die 208a0, die 208a1, die 208a2;
channel 2065 coupled to and communicating with die 20850,
20851, 20852; and channel 2067 coupled to and communi-
cating with die 20870, 20871. Note that the number of chan-
nels and corresponding memory dies depicted in FIG. 2 is for
purposes of example and embodiments of the invention are
not limited to the exact configuration depicted.

According to embodiments, operation monitor 202 oper-
ates as described in reference to FIG. 3. Generally, operation
monitor 202 can be considered as a hardware accelerator that
is configured to assist the controller in performing executable
tasks. According to an embodiment, operation monitor 202 is
implemented in controller 112 (FIG. 1) but practice of
embodiments of the invention are not so limited. Therefore,
operation monitor 202 could be implemented essentially any-
where within SSD 102 (FIG. 1), for example, even in one or
more of the memory dies 208a0-20871. Operation monitor
202 may be implemented in firmware or in hardware. As is
described in more detail in reference to FIG. 3, operation
monitor 202 functions generally as an estimator function.

Operating environment 200 may include a dedicated or
shared CPU 204 to execute instructions, procedures, etc.
associated with the functionality of operation monitor 202.
CPU 204 is an SSD 102 processor which can run executable
logic for servicing the operations associated with memory
dies 20840-20871. Similarly, each of channels 2064, 2065,
2067 interface with each other as well as with their respective
memory dies. A channel can be considered a communication
“pipeline” between multiple entities or components. There-

US 9,354,814 B2

5

fore, channels 206a, 2065, 206 of SSD 102 function as
communication and operational lines between operation
monitor 202 and each channel’s respective memory dies, and
between CPU 204 and each channel’s respective memory
dies.

Flash memory is a type of non-volatile memory. Flash
memory is a type of electrically erasable programmable read-
only memory (EEPROM). A memory die is a hardware unit of
non-volatile memory. A flash memory die is a discrete inte-
grated circuit die, wherein such die includes at least one flash
memory integrated circuit. The dies are the low level medium
on which data is stored on flash memory.

FIG. 3 is a block diagram illustrating a memory operation
monitor, according to an embodiment of the invention.
Memory operation monitor 202 of FIG. 3 includes multiple
die counters, each of which is associated with one or more
corresponding memory dies. For example, die counters
30240, 302a1, 30242 are associated with corresponding dies
20840, 20841, 20842 (FIG. 2); die counters 30250, 30251,
30252 are associated with corresponding dies 20850, 20851,
20852 (FIG. 2); and die counters 30270, 302x1, 302%2 are
associated with corresponding dies 20820, 2081, 20872
(FIG. 2). As with the number of memory dies, note that the
number of die counters depicted in FIG. 3 is for purposes of
example and embodiments of the invention are not limited to
the exact configuration and number of die counters depicted.

Die counters 302a0-30272 are data structures used to track
the completion time associated with read operations on cor-
responding dies 208a0-20872 (FIG. 2). The estimated time to
complete a read operation on a particular die is characterized
by a “operation cost” metric which is stored in the corre-
sponding die counter. The operation cost values stored in the
die counters 302a0-30272 are generated for every flash
operation submitted to the dies 20840-208#2 and are based
on, according to an embodiment, the die history and the
physical location of the operation.

Memory operation monitor 202 includes a timer 304 which
is associated with the die counters 302a0-302%2. Timer 304
generates a periodic event, such as a clock tick, that decre-
ments all the die counters 302a0-30272. For a non-limiting
example, timer 304 may generate a 1 us clock tick. Once
initialized, timer 304 ticks regardless of any read command.
Timer 304 may be implemented, for example, as a digital
counter that decrements at a fixed frequency which is often
configurable. More sophisticated timers may use comparison
logic to compare the timer value with a specific value, set by
software or other logic, that triggers some action when the
timer value matches the preset value. This type of timer can be
used, for example, to generate a pulse. According to an
embodiment, a digital counter using comparison logic to
generate a pulse is used to decrement the values in die
counters 302a0-3027.2. However, the type of timer used may
vary from implementation to implementation.

Thus, operation monitor 202 estimates and manages the
completion time of flash read operations on all flash dies
comprising a solid state drive, by loading die counters 30240-
30272 with an operation cost and decrementing these opera-
tion cost values every clock tick from timer 304.

Memory operation monitor 202 includes a one or more
program cost registers 314a, 3145, 314¢, 314n. Program cost
registers 314a-314n are used to account for the time it takes to
complete a page program operation, otherwise known as a
write operation. The number of program cost registers
depicted in FIG. 3 is for purposes of example and embodi-
ments of the invention are not limited to the exact configura-
tion and number of program cost registers depicted. The
number of cost registers may be a matter of design choice and

40

45

55

6

may be based on the non-volatile memory 120a-1207 (FIG.
1) and SSD 102 (FIG. 1) architecture, for example. However,
according to an embodiment, four cost registers are used to
hold four possible values for a program cost, where such
program cost values account for programming variation due
to page location within the non-volatile memory 120a-120z.
General program cost register 314a-314# values can be pre-
determined from the non-volatile memory 120a-120%, but
these values vary based on the relevant location on the non-
volatile memory at which the requested data is stored, based
on the type of non-volatile memory, and the like.

Operation monitor 202 includes an erase cost register 310
and a read cost register 312. Erase cost register 310 is used to
store a value representing the time it takes to complete an
erase operation and the read cost register 312 is used to store
a value representing the time it takes to complete an erase
operation. A single erase cost register 310 and a single read
cost register 312 are shown in FIG. 3 for purposes of simplic-
ity, and embodiments of the invention could be implemented
as shown for a relatively simple implementation of the
broader teachings described herein. That is, a simple imple-
mentation may utilize simple registers to store the various
cost information.

However, read, erase, and program costs vary over the life
of an SSD and over the different blocks within a die 20840-
20872. Therefore, implementations of embodiments may
vary in the level of granularity at which costs are estimated.
Therefore, a relatively more complex implementation of
embodiments may use memory 308 to store many variations
of read, erase, and program costs on a die, block, or page
basis, and as these costs change over the life of the drive. A
larger memory 308 storing many variations of cost metrics is
likely to produce a more accurate cost estimate, so cost granu-
larity versus estimation accuracy is a tradeoft that can be
managed at the implementation level.

One reason that program (i.e., write operation) costs, read
costs and erase costs are considered is that the time of comple-
tion of a read operation on a non-volatile memory die 208a0-
20872, and thus the optimum order in which data is returned
to the host 104 (FIG. 1), is affected by write, erase and read
operations executing contemporaneous with read operations,
for example, due to host write operations and garbage collec-
tion operations (i.e., a random mix scenario), as well as read
operations due to other host commands targeting the same die
(i.e., a random read scenario). Therefore, the optimum order
of commands in which data should be returned to the host 104
(FIG. 1) does not necessarily correspond to the order in which
the host sent the commands to the SSD 102 (FIG. 1) due at
least in part to random mix and random read scenarios as well
as background operations.

Control logic 306 of operation monitor 202 is the logic
which executes to populate and manage the die counters
302a0-30272 and to configure the various registers, such as
program cost registers 314a-314n, the erase cost register 310,
and the read cost register 312, as well as any other registers
that may be implemented in alternative embodiments of
operation monitor 202. Control logic 306 may also perform
other tasks and computations in support of determining an
optimum order in which to return data to the host 104, such as
averaging various operation costs (e.g., erase costs, read
costs) across multiple dies 20840-208%2 (FIG. 2) or across
multiple non-volatile memory 120a-1207 (FIG. 1), such as
adjusting register operation costs based on current or actual
operation completion times, and the like. The scope of control
logic 306 is not intended to be limited and expansion of such
logic to perform other functions is specifically contemplated.

US 9,354,814 B2

7

Operation monitor 202 includes one or more channel bus
control 316a, 3165, 316n, each corresponding to a respective
channel 206a, 2065, 2067 (F1G. 2). According to an embodi-
ment, channel bus controls 316a-316n are configured to
detect the start and the end of operations on dies 208a0-20872
(FIG. 2), for example, by snooping channel buses (FIG. 2)
over which channels 206a-2067 facilitate operations to dies
208a0-20872. Such detected operation activities can be used
by control logic 306 to populate and manage the operation
cost values of die counters 302a0-3027,2.

Memory 308 of operation monitor 202 is memory available
for use by operation monitor 202 for various purposes, some
of which are described in more detail herein in the context of
the desired cost metric granularity and of self-adjustment
features that may be embodied in operation monitor 202. The
type and form of memory 308 is not limited, and may vary
from implementation to implementation based on related
design constraints, goals, and the like.

Method for Managing Returns to a Host

FIG. 41s a flow diagram illustrating a method for managing
returns to a host, according to an embodiment of the inven-
tion. The process illustrated in FIG. 4 may be implemented in
an SSD such as SSD 102 (FIG. 1). More specifically, the
process illustrated in FIG. 4 may be implemented in control-
ler 112 (FIG. 1) of SSD 102, according to an embodiment.
Further, according to an embodiment the process of FIG. 4 is
implemented in memory operation monitor 202 (FIG. 2). The
process logic may be implemented as analog or digital hard-
ware circuitry within SSD 102 or as firmware instructions
executed by a processor, such as CPU 204 (FIG. 2) or an
MPU, within the SSD 102.

At block 402 of FIG. 4, a data read command is received
from a host. For example, a data read command is received
from host device 104 (FIG. 1) at controller 112 (FIG. 1) via
interface 110 (FIG. 1) of SSD 102 (FIG. 1). In a queued
command system, a host can send many read and write com-
mands to a storage device such as SSD 102, i.e., more than the
SSD 102 can process concurrently and instantaneously. Nota-
bly, the order in which commands are sent by the host is not
always the best order in which to answer or return data to the
host for the best SSD performance. This is partly because the
latency to read data from flash memory dies varies based on,
for example, whether or not the target die is idle and whether
or not the target die is busy with an erase, page program or
read operation.

The controller 112 (FIG. 1) has “knowledge” of where data
is stored within non-volatile memory 120a-120n (FIG. 1).
Thus, the controller 112 may fetch data from memory in
response to a request in the order in which requests are
received, however, different operations take different
amounts of time depending, for example, on what and how
the non-volatile memory is currently operating, what the
memory’s previous operations were, where the relevant data
is located in memory, and the like. Significantly, embodi-
ments described herein determine an optimum order in which
to return data to the host for performance purposes. By con-
trast, if a non-optimum return order is utilized then the system
is often required to wait longer and/or more often for other
memory operations to complete before data can be returned to
the host.

Atblock 404, an operation cost is generated for each opera-
tion submitted to a respective non-volatile memory die. For
example, based on the values of the erase cost register 310
(FIG. 3), the read cost register 312 (FIG. 3), and the program
cost registers 314a-314n (FIG. 3), and on what the target
memory dies are currently processing or have queued, control
logic 306 (FIG. 3) of memory operation monitor 202 (FIG. 2)

10

15

20

25

30

35

40

45

50

55

60

65

8

builds and stores operation costs for the target dies (e.g., one
or more of dies 208a0-20872 of FIG. 2) in corresponding die
counters 302a0-30272 (FIG. 3). Note that the operation costs
may be, but are not necessarily, generated in response to the
read request from the host.

According to an embodiment, the operation cost values
stored in the counters are automatically generated for every
non-volatile memory operation submitted to the dies, for a
particular read command. As previously described, control
logic 306 (FIG. 3) can use information obtained by channel
bus controllers 316a-316n (FIG. 3) from respective channel
buses, e.g., operation start and end times, to compute the
current values for the various die counters 302a0-30272 (FIG.
3)inresponse to a read command. Alternatively, the operation
cost values stored in the counters are automatically generated
and constantly managed for every non-volatile memory die
and is, therefore, available when requested in response to a
read command from the host. Thus, control logic 306 can use
information obtained by channel bus controllers 316a-3167
from respective channel buses to trigger initialization and
flushing of the various die counters 302a0-30272 over time.

At block 406, over time, each operation cost is decre-
mented based onatimer which generates a periodic event. For
example, the operation costs generated for the target dies
(e.g., one or more of dies 20840-208%2 of FIG. 2) in corre-
sponding die counters 302a0-30272 (FIG. 3) are decre-
mented over time based on the clock tick of timer 304 (FIG.
3). Assuming for discussion that one or more dies is currently
busy with an erase, read, or write operation, then the operation
cost in the corresponding dies reflect the time to completion
for the respective current operation. Then, as time passes and
the operations move to completion, the operation costs in the
die counters are decreasing accordingly based on the decre-
menting timer 304 clock tick, with the intent being to decre-
ment the operation cost of the current operation to zero coin-
cident with the current operation completion.

For certain types of non-volatile memory, such as NAND
flash, the maximum amount of data that can be read from or
written to the memory is a page. For example, a page may be
8 Kb of data. Therefore, a read or write command is often
spread across multiple dies. Upon receiving a host data com-
mand describing a read operation, the controller 112 (FIG. 1)
firmware can break the data command into die read opera-
tions, the number of which depends of the command length.
For example, with 8 Kb pages, a 64 Kb read command from
the host would require eight reads from the dies, i.e., eight
reads of 8 Kb each for a 64 Kb read command.

At block 408, the total cost of the read command received
from the host is computed based on the current operation
costs for each operation submitted to arespective non-volatile
memory die. For example, the maximum time to completion
of all the read operations required to retrieve each segment of
data from the dies, is calculated. Continuing with the 64 Kb
read command example, the operation costs for each of the
eight dies needed to be read in order to fulfill the read com-
mand from the host are compared to determine the maximum
time to completion of this set of die read operations, to com-
pute the total operation cost of the read command. As dis-
cussed, the time to completion of each read operation takes
into account what each die is currently doing, and may take
into account what each die had done during its operational
life.

For example and according to one embodiment, while the
operation monitor 202 (FIG. 3) is responsible for building and
maintaining the operation costs in the die counters 302a0-
30272 (FIG. 3) as described, the controller 112 (FIG. 1)
firmware is responsible for computing the total operation

US 9,354,814 B2

9

cost, as at block 408. However, the distribution of function-
ality may vary from implementation to implementation and is
not limited to the distribution described. For example, in an
alternative embodiment the total operation cost may be com-
puted by operation monitor 202 and returned to the controller
112 firmware.

At block 410, based on the total cost of the read command
computed at block 408, it is determined in what order to
return requested data to the host, relative to other read com-
mands received from the host. As discussed, the order in
which commands are sent by the host is not always the best
order in which to answer or return data to the host for the best
SSD performance. The method of FIG. 4 estimates the “best”
or “optimum” order in which to return data to the host without
giving primary regard to the order in which various read
commands are received from the host. As such, die operations
having the smallest operation cost, i.e., having the shortest
time to completion, can be returned to the host before die
operations having larger operation costs and time to comple-
tion, so that returns are queued to avoid longer operations
blocking the return of shorter operations.

For example and according to one embodiment, the con-
troller 112 (FIG. 1) firmware is responsible for determining
the return order, as at block 410. However, the distribution of
functionality may vary from implementation to implementa-
tion and is not limited to the distribution described. For
example, in an alternative embodiment the return order may
be computed by operation monitor 202 and returned to the
controller 112 firmware.

To summarize how an operation cost estimation process
may proceed, according to an embodiment, upon receiving a
read command from a host 104 (FIG. 1) the controller 112
(FIG. 1) queries the operation monitor 202 (FIG. 2 and FIG.
3) for the operation cost of each non-volatile memory die (of
dies 208a0-20872 of FIG. 2) targeted by the read command.
Effectively the controller 112 queries the operation monitor
202 for the amount of time to complete the read of each
targeted die, in view of the current state of operation of each
targeted die. The controller 112 then computes the total cost
of the read command based on the operation costs for all the
targeted dies. From the total cost of the read command the
controller can determine a high performance order in which
to return data in response to the read command relative to
other read commands from the host.

Self-Adjustment of Estimator Mechanism

Because the characteristics and performance capabilities
of flash memory change over time and with use (e.g., the
program time, erase time, etc.), and the operation cost esti-
mates are based in part on the characteristics of the flash, the
initial operation cost values may be adjusted over the lifetime
of the drive, according to an embodiment in which flash is
used for the non-volatile memory. As such, the values in the
erase cost register 310, the read cost register 312, and the
program cost registers 314a-314z (FIG. 3) may be adjusted
over time based on the completion time variation that occurs
with use, i.e., based on the operational history of the flash.

According to an embodiment, operation monitor 202 (FIG.
2) tracks the number of times that each dies is used for the
various operations to identify operation cost changes over
time due to the physics of the flash. For this purpose, opera-
tion monitor 202 may use actual data from the flash, which
may be obtained from channel bus controls 316a-316% (F1G.
3), to adjust the operation cost register values as the flash
deteriorates. Such information could provide precise die-de-
pendent deterioration associated with each flash memory
component, and could be stored in memory 308 (FIG. 3) of
operation monitor 202. The precision of such information

25

30

40

45

10

may vary from implementation to implementation and thus
could be collected and stored “per-die” or even “per-block”.
Therefore, memory 308 can be sized accordingly, based on
the level of precision implemented for the flash deterioration
data.
In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. Thus, the sole and exclusive indicator of what is the
invention, and is intended by the applicants to be the inven-
tion, is the set of claims that issue from this application, in the
specific form in which such claims issue, including any sub-
sequent correction. Any definitions expressly set forth herein
for terms contained in such claims shall govern the meaning
of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not
expressly recited in a claim should limit the scope of such
claim in any way. The specification and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.
What is claimed is:
1. A method for managing returns to a host in response to
read commands received by a solid-state drive (SSD) device
from said host, the method comprising:
receiving a data read command from said host;
computing a total estimated time to completion of said read
command based on an estimated time to completion for
each operation submitted to a respective non-volatile
memory die corresponding to said read command;

wherein said total estimated time to completion of said
read command is based on current performance capa-
bilities of at least one respective non-volatile memory
die as said performance capabilities change over time;

determining, based on said total estimated time to comple-
tion of said read command, in what order to return
requested data to said host relative to other data read
commands received from said host; and

returning said requested data to said host in the order deter-

mined.

2. The method of claim 1, wherein said total estimated time
to completion of said read command is based on said perfor-
mance capabilities of said at least one non-volatile memory
die deteriorating over time due to the physics underlying said
at least one non-volatile memory die.

3. The method of claim 2, wherein said total estimated time
to completion of said read command is based on a time for
completion of an erase operation on said at least one non-
volatile memory die as said performance capabilities change
over time.

4. The method of claim 2, wherein said total estimated time
to completion of said read command is based on a time for
completion of a read operation on said at least one non-
volatile memory die as said performance capabilities change
over time.

5. The method of claim 2, wherein said total estimated time
to completion of said read command is based on a time for
completion of a write operation on said at least one non-
volatile memory die as said performance capabilities change
over time.

6. The method of claim 5, wherein said total estimated time
to completion of said read command is based on a time for
completion of a write operation on said at least one non-
volatile memory die based on the type of said at least one
non-volatile memory.

7. The method of claim 2, wherein said total estimated time
to completion of said read command is based on current
performance capabilities of a block corresponding to said at

US 9,354,814 B2

11

least one respective non-volatile memory die as said perfor-
mance capabilities of said block change over time.
8. The method of claim 2, wherein said total estimated time
to completion of said read command is based on current
performance capabilities of a page corresponding to said at
least one respective non-volatile memory die as said perfor-
mance capabilities of said page change over time.
9. The method of claim 1, wherein said total estimated time
to completion of said read command is based on a time for
completion of at least one of an erase operation, a read opera-
tion, and a write operation on said at least one non-volatile
memory die as said performance capabilities change over
time.
10. The method of claim 1, wherein said total estimated
time to completion of said read command is based on current
performance capabilities of at least one of a block and a page
corresponding to said at least one respective non-volatile
memory die as said performance capabilities change over
time due to number of operations for which said at least one
of'a block and a page is used.
11. The method of claim 1, wherein said estimated time to
completion for each operation submitted to a respective non-
volatile memory die corresponding to said read command is
computed in response to receiving said data read command
from said host.
12. The method of claim 1, wherein said estimated time to
completion for each operation submitted to a respective non-
volatile memory die corresponding to said read command is
computed and managed constantly for one or more of said
respective non-volatile memory die, and wherein determin-
ing in what order to return requested data to said host is
performed in response to receiving said data read command
from said host.
13. The method of claim 1, wherein returning said
requested data to said host, in the order determined relative to
other data read commands received from said host, includes
queuing requested data for return to said host such that longer
operations blocking the return of shorter operations is
avoided.
14. A solid-state drive controller storing one or more
sequence of instructions which, when executed by one or
more processors, cause performance of:
receiving a data read command from said host;
computing a total estimated time to completion of said read
command based on an estimated time to completion for
each operation submitted to a respective non-volatile
memory die corresponding to said read command;

wherein said total estimated time to completion of said
read command is based on current performance capa-
bilities of at least one respective non-volatile memory
die as said performance capabilities change over time;

determining, based on said total estimated time to comple-
tion of said read command, in what order to return
requested data to said host relative to other data read
commands received from said host; and

returning said requested data to said host in the order deter-

mined.

15. The solid-state drive controller of claim 14, wherein
said total estimated time to completion of said read command
is based on said performance capabilities of said at least one
non-volatile memory die deteriorating over time due to the
physics underlying said at least one non-volatile memory die.

16. The solid-state drive controller of claim 15, wherein
said total estimated time to completion of said read command
is based on a time for completion of an erase operation on said
at least one non-volatile memory die as said performance
capabilities change over time.

10

15

20

25

30

35

40

45

50

55

60

12

17. The solid-state drive controller of claim 15, wherein
said total estimated time to completion of said read command
is based on a time for completion of a read operation on said
at least one non-volatile memory die as said performance
capabilities change over time.

18. The solid-state drive controller of claim 15, wherein
said total estimated time to completion of said read command
is based on a time for completion of a write operation on said
at least one non-volatile memory die as said performance
capabilities change over time.

19. The solid-state drive controller of claim 18, wherein
said total estimated time to completion of said read command
is based on a time for completion of a write operation on said
at least one non-volatile memory die based on the type of said
at least one non-volatile memory.

20. The solid-state drive controller of claim 15, wherein
said total estimated time to completion of said read command
is based on current performance capabilities of a block cor-
responding to said at least one respective non-volatile
memory die as said performance capabilities of said block
change over time.

21. The solid-state drive controller of claim 15, wherein
said total estimated time to completion of said read command
is based on current performance capabilities of a page corre-
sponding to said at least one respective non-volatile memory
die as said performance capabilities of said page change over
time.

22. The solid-state drive controller of claim 14, wherein
said estimated time to completion for each operation submit-
ted to a respective non-volatile memory die corresponding to
said read command is computed in response to receiving said
data read command from said host.

23. The solid-state drive controller of claim 14, wherein
said estimated time to completion for each operation submit-
ted to a respective non-volatile memory die corresponding to
said read command is computed and managed constantly for
one or more of said respective non-volatile memory die, and
wherein determining in what order to return requested data to
said host is performed in response to receiving said data read
command from said host.

24. A solid-state drive (SSD) storage device comprising
non-volatile memory dies and a controller for managing
operations on said non-volatile memory dies, said SSD com-
prising:

said controller storing one or more sequence of instructions

which, when executed by one or more processors, cause

performance of:

receiving a data read command from said host;

computing a total estimated time to completion of said
read command based on an estimated time to comple-
tion for each operation submitted to a respective non-
volatile memory die corresponding to said read com-
mand;

wherein said total estimated time to completion of said
read command is based on current performance capa-
bilities of at least one respective non-volatile memory
die as said performance capabilities change over time;

determining, based on said total estimated time to
completion of said read command, in what order to
return requested data to said host relative to other data
read commands received from said host; and

returning said requested data to said host in the order
determined.

25. The solid-state drive storage device of claim 24,
wherein said total estimated time to completion of said read
command is based on said performance capabilities of said at

US 9,354,814 B2

13

least one non-volatile memory die deteriorating over time due
to the physics underlying said at least one non-volatile
memory die.

26. The solid-state drive storage device of claim 25,
wherein said total estimated time to completion of said read
command is based on a time for completion of an erase
operation on said at least one non-volatile memory die as said
performance capabilities change over time.

27. The solid-state drive storage device of claim 25,
wherein said total estimated time to completion of said read
command is based on a time for completion of a read opera-
tion on said at least one non-volatile memory die as said
performance capabilities change over time.

28. The solid-state drive storage device of claim 25,
wherein said total estimated time to completion of said read
command is based on a time for completion of a write opera-
tion on said at least one non-volatile memory die as said
performance capabilities change over time.

29. The solid-state drive storage device of claim 28,
wherein said total estimated time to completion of said read
command is based on a time for completion of a write opera-
tion on said at least one non-volatile memory die based on
type of said at least one non-volatile memory.

30. The solid-state drive storage device of claim 25,
wherein said total estimated time to completion of said read

10

15

20

14

command is based on current performance capabilities of a
block corresponding to said at least one respective non-vola-
tile memory die as said performance capabilities of said block
change over time.

31. The solid-state drive storage device of claim 25,
wherein said total estimated time to completion of said read
command is based on current performance capabilities of a
page corresponding to said at least one respective non-vola-
tile memory die as said performance capabilities of said page
change over time.

32. The solid-state drive storage device of claim 24,
wherein said estimated time to completion for each operation
submitted to a respective non-volatile memory die corre-
sponding to said read command is computed in response to
receiving said data read command from said host.

33. The solid-state drive storage device of claim 24,
wherein said estimated time to completion for each operation
submitted to a respective non-volatile memory die corre-
sponding to said read command is computed and managed
constantly for one or more of said respective non-volatile
memory die, and wherein determining in what order to return
requested data to said host is performed in response to receiv-
ing said data read command from said host.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,354,814 B2 Page 1 of 1
APPLICATION NO. : 14/680657

DATED : May 31, 2016

INVENTOR(S) : Alcantara et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 11, beginning on line 40, replace the text “one or more sequence of instructions™ with “one or
more sequences of instructions”.

Column 12, on line 46, replace the text “one or more sequence of instructions™ with “one or more
sequences of instructions”.

Signed and Sealed this
Sixth Day of September, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

